On designing the perfect boat

Saction publique et des rapports sociaux

ant à comprendre l'aménagem

Growth in the Canadian Urban System, 2001-2006

espace occupe a. Is sociales, économic ise. L'espace s'inscri des ramorté sociaux

Richard Shearmur

Laboratoire d'Analyse Spatiale et d'Économie Régionale

Toronto, May 2010 nisé, en un mot sur l'ensemble de

" en tant que lieu d'apparténances multir"

Centre - Urbanisation Culture Société

Gregory Wrona, http://www.photographersdirect.com/news/200807.asp

1- The neo-regionalist approach to innovation and growth

- Regions are the 'nexus of untraded interdependencies' (Storper)
- Innovation dynamics (linked to institutions, human capital, networks, collaborations) are principally local: the importance of proximity.
- There is a connection between local innovation and local growth (endogenous growth theory).
- Localities (cities) are conceived of as systems with their own internal innovation and growth dynamics, sometimes connected to others by pipelines but essentially with their own 'buzz'.

2- A brief critique of this approach

- Has tended to ignore knowledge about growth dynamics derived from city systems analysis (Pred, 1973; Pred & Tornquist, 1972).

-Cities and regions are interconnected: thus what happens in one is connected with what happens elsewhere

-Misapplies endogenous growth theory :

-Can one reasonably expect smaller cities – and even metropolitan areas – to generate their growth dynamics internally?

-In particular:

-On what basis do we suppose that the employment and income benefits of innovation will be captured locally?

3- Another way of understanding city growth

- City growth is partly attributable to :
 - local dynamics (neo-regionalism, or building boats).
 - diversity, human capital, local institutions, local politics etc...
 - wider interdependencies with urban areas to which it is connected *(city-systems, i.e. wider weather patterns).*
 - regions, access to markets
 - global trends in the particular economic sectors which are found in the city (aspatial industrial trends, , i.e. wider weather patterns).
 - ressource booms, demand for automobiles, currency fluctuations
 - wider scale historic/political trends (path-dependency, , i.e. wider weather patterns).
 - e.g. opening up of west, NAFTA (North-South trade realignment)

4- An example of what this approach can tell us

- Simple (meteorological?) model applied to Canada, based upon work by myself and colleagues (Shearmur & Polèse, 2007; Shearmur et al, 2007)
- Growth is function of:
 - Local city size (proxy for agglomeration)
 - Location relative to markets (access to external agglomeration effects)
 - Location relative to metropolitan areas (centre/periphery)
 - Local specialisation (Jacobs v. MAR effects)
 - Local human capital
 - Industrial structure
 - Region (regional city-system effects and interdependencies)
 - Proximity to US border (US markets)
 - East-west dimension (historic drift to the west)

INRS Université d'avant-garde

5- Model

- Model is run with all explanatory variables
- Outliers (observations which have strong individual effect on regression coefficients, based on Cook's d) are eliminated
- Independent variables are checked for multicollinearity (no collinearity problems, VIF is below 5)
- Backwards selection process is performed to eliminate variables that are not significant (stay=90%)
- Final model is checked.

6- Measures of growth

- Employment growth
- Earned income growth

7- Employment growth

Table 1. Outliers from model for employment growth

class1	region	p01	City	emp.	work ic	residual	standard	
				growth	growth		residual	
С	ON	146950	Barrie	0.21	0.13	0.10	2.10	Less wage pressure
Р	AL	86080	Lethbridge	0.12	0.20	-0.09	-1.88	
С	AL	11635	Okotoks	0.44	0.16	0.20	4.10	
Ρ	AL	11440	Grand-Centre	0.10	0.22	-0.08	-1.69	
Ρ	AL	58315	Grande-Prairie	0.26	0.37	0.11	2.30	
Ρ	AL	42475	Fort-McMurray	0.26	0.40	0.14	2.90	
С	AL	10805	Wetaskiwin	0.09	0.36	-0.10	-2.12	Wage pressure
Ρ	BC	15175	Prince-Rupert	-0.12	0.03	-0.12	-2.50	
Ρ	BC	10210	Kitimat	-0.11	0.10	-0.10	-2.03	
Р	BC	22900	Fort-St-John	0.18	0.25	0.16	3.30	
Ρ	PR	21245	Whitehorse	0.10	0.17	0.07	1.43	
Ρ	PR	16450	Yellowknife	0.14	0.24	0.10	2.12	
С	QC	8870	Ste-Sophie	0.26	0.21	0.08	1.70	
С	QC	8175	Prevost	0.26	0.23	0.10	2.10	
С	PR	9025	Steinbach	0.18	0.21	0.10	2.00	

Note: ON: Ontario; AL: Alberta; BC: British Columbia; QC: Quebec; PR: Prairies

C: within 100km of a large metro area; P: beyond 100km; ic: income; p01: population in 2001.

Centre - Urbanisation C

Table 2: Regression results, employment growth

on C							
			Sum of	Mean			
T C	Source	DF	Squares	Square	F Value	Pr > F	
	Model	12	0.26672	0.02223	14.05	<.0001	
	Error	175	0.27683	0.00158			
	Corrected Total	187	0.54355				
	Root MSE	0.0398	R-Square	0.4907			
	Mean growth	0.0767	Adj R-Sq	0.4558]		
	Coeff Var	51.87			J		
			Parameter	Standard			
	Variable	DF	Estimate	Error	t Value	Pr > t	VIF
	Intercept	1	-0.119	0.03	-3.73	0.000	0.00
	AT	1	-0.003	0.01	-0.26	0.797	1.68
	ON	1	-0.033	0.01	-3.90	0.000	2.09
	PR	1	-0.007	0.01	-0.48	0.629	1.63
	AL	1	0.096	0.02	5.91	<.0001	1.42
	BC	1	0.004	0.01	0.33	<mark>0.74</mark> 2	1.85
ervices	CL11	1	0.021	0.01	2.01	0.046	2.54
ervices	CL14	1	0.023	0.01	1.71	0.088	1.68
sectors	CL6	1	0.009	0.01	0.88	0.382	1.93
l estate	CL7	1	0.055	0.01	5.14	<.0001	2.48
ervices	CL8	1	0.047	0.02	2.79	0.006	1.40
acturing	reference: CL9						
	lpt01_2	1	0.021	0.00	6.40	<.0001	2.22
	sp01	1	-0.026	0.01	-2.39	0.02	1.33

Primary, 1st transform. and public service High-tech manufact. and high-order service

Primary sectors Retail, leisure construction and real estate

Public admin and information service

inc admin and information service

Manufacturin

GLM estimates, same model								
			Mean					
Source	DF		Type II SS	Square	F Value	Pr > F		
region		5	0.13	0.03	16.35	<.0001		
CLUSNAME		5	0.06	0.01	7.07	<.0001		
lpt01_2		1	0.06	0.06	41.02	<.0001		
sp01		1	0.01	0.01	5.69	0.02		

Employment growth 2001-2006: actual v. predicted

Predicted employment growth

8. Earned income growth

Table 3: Outliers from model for growth in work income

class1	region	p01	City	emp.	work ic	residual	standard
				growth	growth		residual
Р	AT	171095	St-John's	0.10	0.19	0.08	1.41
Р	AT	10455	Bay-Roberts	0.11	0.22	0.17	2.96
Р	ON	14395	Petawa	0.07	0.21	0.09	1.59
С	AL	11635	Okotoks	0.44	0.16	-0.12	-2.08
С	AL	10725	Canmore	0.13	0.54	0.21	3.65
Р	AL	11440	Grand-Centre	0.10	0.22	-0.08	-1.50
Р	BC	24185	Quesnel	-0.04	0.26	0.16	2.67
Р	BC	22900	Fort-St-John	0.18	0.25	0.13	2.24
С	ON	11960	Perth-east	-0.01	-0.10	-0.22	-3.65
С	ON	10010	Adjala-Tosorontio	0.09	0.34	0.20	3.41
С	ON	9000	Tiny	0.18	0.38	0.26	4.32
С	AL	7500	Strathmore	0.33	0.14	-0.14	-2.29

Table 4: Regression results, work income per worker Centre - Urbanisation C Sum of Mean DF F Value Pr > FSource Squares Square Model 0.586 0.0451 20.49 <.0001 13 Error 177 0.390 0.0022 Corrected Total 190 0.976 Root MSE 0.047 0.6008 R-Square Dependent Mean 0.127 Adj R-Sq 0.5715 Coeff Var 36.983 Parameter Variance Standard Variable DF Estimate t Value Pr > |t|Inflation Error 0.031 Intercept 1 0.008 0.25 0.805 0.00 0.033 0.017 AT 1 1.98 0.049 2.00 ON -0.001 0.010 -0.13 0.895 2.11 1 PR 0.115 1 0.020 5.91 <.0001 2.69 AL 0.235 11.08 1 0.021 <.0001 2.12 BC 0.033 0.019 1.67 3.73 1 0.096 Primary, 1st transform. and public services CL11 1 0.004 0.012 0.31 0.756 2.35 High-tech manufact. and high-order services CL14 1 0.018 0.017 1.03 0.305 1.94Primary sectors CL6 1 0.036 0.012 3.1 0.002 1.97 Retail, leisure construction and real estate 1 0.015 0.012 1.21 0.230 2.30 Public admin and information services CI8 1 0.571 0.014 0.025 0.57 2.15 Manufacturing reference: CL9 0.107 0.032 rlpt01 1 3.36 0.001 3.38 1 lpt01_2 1 0.008 0.004 2.09 0.038 2.99 pg_01 0.252 0.128 1.97 0.050 2.14 1

GLM results for same model

		Mean				
Source	DF		Type II SS	Square	F Value	Pr > F
reg		5	0.403785	0.080757	36.7	<.0001
CLUSNAME		5	0.025727	0.005145	2.34	0.0437
rlpt01_1		1	0.024807	0.024807	11.27	0.001
lpt01_2		1	0.009575	0.009575	4.35	0.0384
pg_01		1	0.008552	0.008552	3.89	0.0502

Growth in work income, 2001-2006: actual v. predicted

INRS Université d'avant-garde

9. Conclusions

- These results can be dismissed out of hand:
 - The weatherman / woman always gets it wrong !
 - Naive positivism;
 - Vagueness of precise mechanisms at work;
 - They fail to integrate agency, institutions, local realities etc...;
 - They do not lend support to fashionable discourses such as 'talent', 'territoriality', 'embeddeness'...
 - They rest upon (revisited) old theory (urban systems especially Pred).

INRS Université d'avant-garde

9-Conclusions

- Or one can engage with the results:
 - What are the weather patterns and how do they (or don't they) affect my boat?
 - <u>Is the city region the correct scale</u> at which to look for innovation systems?
 - To what extent do <u>industrial clusters</u> behave in a 'Porterian' way (localised dynamics) and to what extent do they reflect wider industrial trends (clusters as understood by Perroux(1949))?
 - Is it possible for the effects of <u>local factors</u> (such as human capital) to be <u>captured locally</u>, given the mobility of people, their involvement in non-local networks and multi-location companies?
 - <u>Are innovation and local growth connected</u>? Even if regional dynamics lead to innovation, does local innovation necessarily lead to local growth?</u>

INRS Université d'avant-garde

9. Conclusions

- At the ISRN we have learned how to build, crew and organise boats very well:
 - We have dissected how local city dynamics affect innovation from a governance, talent and industrial perspective.
- We still have little idea of what happens when the boats are put to sea.
 - We still do not really know to what extent and how this affects cities' overall growth trajectories;
 - We still do not know what ELSE affects cities' growth trajectories.

INRS Université d'avant-garde

Selected bibliography (background to ideas expressed in this presentation):

- On the weak connection between local innovation and local growth:
 - Shearmur, R., 2010, Like Oil and Water? Regional Innovation Policy and Regional Development Policy, Montreal: INRS working paper, <u>http://www.ucs.inrs.ca/pdf/inedit2010_02.pdf</u>
- For the underpinnings of the growth model:
 - Shearmur, R., et M.Polèse, 2007, Do Local Factors Explain Local Employment Growth? : Evidence from Canada, 1971-2001, *Regional Studies*, 45.4, 453-471
 - Shearmur, R., P.Apparicio, P.Lizion and M.Polèse, 2007, Space, Time and Local Employment Growth: An Application of Spatial Regression Analysis, *Growth and Change*, 38.4, 697-722
- On neo-regionalism and spatial analysis:
 - Shearmur, R., 2010, Innovation, Regions and Proximity: from Neo-regionalism to Spatial Analysis, *Regional Studies* (forthcoming)
 - Shearmur, R., 2010, Space, Place and Innovation: a Distance Based Approach, Canadian Geographer, 54.1, 46-67